
Milestone Report: Optimized Cryptography with

LLVM Non-Standard Bitwidth Types

Michael McLoughlin
mcloughlin@cmu.edu

https://mmcloughlin.com/15745

1 Major Changes

There have not been any major changes to the project. The goal remains to
optimize cryptographic finite-field implementations in non-standard bitwidth
types. Initial work has suggested this is a fruitful area for optimization. The
only changes the project are minor refinements of the scope and expected opti-
mizations to be implemented.

2 Accomplishments

2.1 Experiment Setup

I have selected and implemented the primary optimization target for the project,
and established baseline performance in stock LLVM. The primary optimization
target is the X25519 cryptographic function [1] implemented as plainly as possi-
ble in C with the BitInt(255) type provided by the upcoming C23 standard [2].
The X25519 function is a scalar multiplication on the Curve25519 elliptic curve,
which ultimately reduces to arithmetic in the finite field of integers modulo the
prime p = 2255 − 19. X25519 was selected due to its importance as a real-world
cryptographic algorithm, and because the implementation strategies required to
optimize its finite field operations could be transferable to other cryptographic
primitives. Finally, the C implementation with 255-bit types was as simple as
reasonably possible to prompt exploration of how much optimization can be
automated by the compiler.

Alongside the target X25519 implementation, I have implemented a test
suite and benchmark against a popular hand-tuned external implementation.
The test suite verifies both the low-level finite field operations, and the X25519
function against test vectors. The test suite is valuable to provide confidence
in the initial implementation, and to verify any custom optimizations preserve
correctness. The benchmark compares the target implementation against the

1

https://mmcloughlin.com/15745


hand-tuned version in libsodium, a widely deployed and well-optimized cryp-
tographic provider, which we expect to have good though perhaps not absolute
peak performance. The benchmark shows that out of the box Clang 17.0.3
produces code that takes over 125x that of libsodium for a single X25519 call.

Implementation Time (ns) Iterations Cycles Instructions

Target 2900123 240 15.4M 81.236M
libsodium 23161 30217 124.7k 359.506k

This result suggests there may be some low hanging fruit, but we also have
a lot of work to do!

2.2 Understanding Existing LLVM Optimization Passes

Having established target benchmarks of interest, I spent some time understand-
ing how LLVM compiles multi-precision bitwidth arithmetic at the moment.
In the mid-end optimizations on LLVM OR, the SROAPass, EarlyCSEPass and
IPSCCPPass perform useful cleanup. The InstCombinePass and CorrelatedValuePropagationPass
do perform some optimizations of interest, for example replacing modular reduc-
tions with conditional subtraction when the value is known to be only slightly
larger than the modulus (such as the result of an addition).

The llc backend performs more substantial transformations. Firstly, the
ExpandLargeDivRemLegacyPass replaces large modular reductions with a loop-
ing construct which is poorly suited to our use case. It was interesting to see in
source code comments for that pass that “future work includes generating more
specialized code”. Following this, the x86-isel pass does lowering and instruc-
tion selection. Most importantly, it’s the “Legalize SelectionDAG Types” phase
which converts multi-precision arithmetic on wide types into word-by-word op-
erations on machine words. Moreover, the instruction selection phases for x86
do not appear to take advantage of Intel ADX extensions, which are frequently
exploited to accelerate multi-precision arithmetic in cryptographic finite fields.

To support these investigations, I developed a helper tool to inspect the tran-
sitions of LLVM IR and Machine IR through the mid- and back-end optimization
stages. This parses the output of opt and llc with their -print-after-all

flags and produces a HTML report with the IR diff for all passes that made a
change.

2.3 Crandall Reduction Pass

I have implemented an optimization pass that targets modular reductions by
constants with the Crandall form. These reductions appear frequently in cryp-
tographic finite field implementations such as X25519. Crandall primes are
those of the form p = 2n − c for a small constant c, but the optimization would
actually apply for any modulus of that form whether prime or not. The op-
timization leverages the simple fact that for a modulus m = 2n − c we have

2



2n ≡ c (mod m). Therefore, given a value x to be reduced, if we represent it as
its low n bits l and remaining high bits h, then:

x = 2nh+ l ≡ ch+ l (mod m) , (1)

and ch+ l will in most circumstances be much smaller than x. Therefore, this
does not complete the reduction bym but it cheaply produces a result equivalent
modulo m.

The CrandallReductionPass detects and applies this optimization tech-
nique to LLVM IR. Specifically, we apply it to urem instructions where the
modulus is a constant with Crandall form. At this stage the pass only performs
the single step Crandall reduction as above, leaving the rest of the reduction
to LLVM, but the results are surprisingly good nonetheless. With the Crandall
reduction pass applied, our benchmark shows a massive 23x speedup.

Implementation Time (ns) Iterations Cycles Instructions

Target with Crandall 121530 5760 654.7k 2.80878M

These results are encouraging, but there’s much more performance still left
on the table.

2.4 Reduction Analysis Pass

One common technique that appears in hand-tuned optimizations of finite field
arithmetic is to defer complete modular reduction until the last possible mo-
ment. Instead, intermediate computations operate on convenient partially re-
duced forms. For example in the case of Crandall reduction for X25519, we
could use the relation 2255 ≡ 19 (mod p), but it’s actually more favorable to
use the fact that 2256 ≡ 38 (mod p) since 256 sits nicely on a machine-word
boundary. Therefore hand-tuned implementations often maintain 256-bit inter-
mediate values and only do a full reduction modulo p at the end. A related
concept is that a Crandall reduction step will leave a value in a nearly reduced
form, and it may be beneficial to us to keep it that way as long as it won’t
affect the correctness of future modular arithmetic on that value. Our simple C
version of X25519 doesn’t leverage these powerful techniques, since it reduces
modulo p after every operation. We would like to be able to automatically de-
tect and apply partial reduction in the compiler, but we need to know when it
would be safe to do so.

The ReductionAnalysisPass performs an analysis pass that aims to unlock
these kinds of optimizations. Specifically it answers the question of when all uses
of a value will be reduced modulo p in future. This property is intended to be
used to detect when reduction modulo p operations are not necessary, and the
value could be left in a partially-reduced form. The ReductionAnalysisPass is
a worklist-based analysis in which the reduction property is generated by urem

instructions and preserved by selected arithmetic operations. I intend to use the
results of this analysis to extend the Crandall reduction pass, and to implement
so-called “Slothful Reduction” [3].

3



3 Milestone

The milestone goal was to have to have “implemented and evaluated at least
one optimization applying to cryptographic finite fields in LLVM IR”. I have
implemented the Crandall Reduction Pass and evaluated it against the X25519
optimization target, therefore the milestone has been met.

4 Surprises

There have not been any major surprises, though some minor unforeseen factors
in the project are below.

� LLVM Baseline Performance. I expected better performance from LLVM
out of the box. This isn’t a problem per se, and in fact suggests there
might be low-hanging fruit. However, it also suggests there might be a
lot of work required to match hand-tuned implementations, which has
unfortunately lowered my expectations of doing so in the time-scale of
this project.

� LLVM Backend Complexity. Coming into the project I had less familiarity
with the LLVM backend optimizer than I did with the mid-end passes on
LLVM IR. While this is not a blocker, I have less ambitious expectations
for this aspect of the project than I did before.

5 Schedule

The remaining time on the project will focus on three areas, with approximately
equal time devoted to each.

1. Mid-end Optimization. Leverage the results of the Reduction Analysis
Pass to perform optimizations on modular reduction at the LLVM IR level.
Specific optimizations would be: replacing modular reduction by condi-
tional subtraction, performing crandall reduction at the word boundary,
and deferring reductions using the “Slothful Reduction” technique.

2. Back-end Optimization. Deep dive into the low-level instruction schedul-
ing for multi-precision arithmetic. Seek optimization opportunities for
multi-precision arithmetic with Intel ADX instructions.

3. Wrap-up. Evaluation, report writing and presentation preparation.

6 Resources Needed

Since the project has focussed on LLVM and x86, the resource requirements have
been minimal. I don’t expect to need anything else to complete the project.

4



References

[1] Adam Langley, Mike Hamburg, and Sean Turner. Elliptic Curves for Secu-
rity. RFC 7748. Jan. 2016. doi: 10.17487/RFC7748. url: https://www.
rfc-editor.org/info/rfc7748.

[2] Adding a Fundamental Type for N-bit integers. Proposal. June 2021. url:
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2763.pdf.

[3] Michael Scott. Slothful reduction. Cryptology ePrint Archive, Paper 2017/437.
2017. url: https://eprint.iacr.org/2017/437.

5

https://doi.org/10.17487/RFC7748
https://www.rfc-editor.org/info/rfc7748
https://www.rfc-editor.org/info/rfc7748
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2763.pdf
https://eprint.iacr.org/2017/437

	Major Changes
	Accomplishments
	Experiment Setup
	Understanding Existing LLVM Optimization Passes
	Crandall Reduction Pass
	Reduction Analysis Pass

	Milestone
	Surprises
	Schedule
	Resources Needed

