
Optimized Cryptography with LLVM
Non-Standard Bitwidth Types

Michael McLoughlin
mcloughlin@cmu.edu

https://mmcloughlin.com/15745

https://mmcloughlin.com/15745


Non-standard Bitwidth Types
Compiler optimization for domain-specific use cases

Background

LLVM has arbitrary bitwidth types. C23 will soon have
BitInt(N). What can we do with them?

Opportunity

Bitwidth types allow concise and safer implementations of
otherwise complex cryptography. Can compiler optimizations
reach parity with hand-tuned code?

Contribution

Demonstrate feasiblity of finite-field cryptography with bitwidth
types: achieved optimizations of 80.1x over baseline getting
within 1.6x of hand-tuned code.



Experimental Setup
Target benchmark: X25519 elliptic curve with BitInt(255) type

X25519 cryptographic algorithm:
Widely deployed and representative of
finite-field crypto.

Base operations arithmetic
modulo prime 2255 − 19.
Implemented with C type
BitInt(255).

Inner loop is modular arithmetic
expression graph (right)

Baseline: Stock Clang/LLVM is
127.3x slower than libsodium

hand-tuned code.

A = X2+Z2

AA = A2

B = X2-Z2

BB = B2

E = AA-BB

C = X3+Z3

D = X3-Z3

DA = D*A

CB = C*B

X5 = (DA+CB)2

Z5 = X1*(DA-CB)2

X4 = AA*BB

Z4 = E*(BB+a24*E)



Crandall Reduction
Fast modular reduction trick for special primes

x mod p optimization for Crandall primes of the form:

p = 2n − c =⇒ 2n ≡ c (mod p)

Crandall reduction step folds the high-bits into the low n bits:
Output much smaller than x and equivalent modulo p.

x = 2nH + L = H L (n bits)

cH + L

Generate Crandall steps prior to urem instructions.

CrandallReductionPass: 24.0x speedup!



Reduction Analysis
Identify expression graphs of pure modular arithmetic

Goal: identify arithmetic values that will be reduced modulo p.

x2 z2 x3 z3

D = (x2 + z2) mod p A = (x3 − z3) mod p

(D ∗ A) mod p

ReductionAnalysis pass. Worklist algorithm:

1 Value lattice states: UNDEF, REDUCED(M), NOTREDUCED

2 Reduction generated by urem instructions

3 Propagated: non-wrapping arithmetic, no-op casts, ϕ



Incomplete Reduction
Eliminate expensive reductions by operating in partially reduced form

Crandall steps leave a partially reduced result. Can we stop
there? Yes, if Reduction Analysis tells us the value will be
reduced in future.

Algorithm

Goal: replace urem instructions with Crandall reductions, resize
types as necessary.

1 Plan: which urem reductions will be left incomplete

2 Type resizing: what types must the new graph have?

3 Rewrite: rewrite modular arithmetic expression graph

Incomplete Reduction: Extra 2.1x. 3.3x with ϕ handling.



Results

Combined Results: 80.1x speedup over baseline! Only 1.6x
away from hand-tuned.

Implementation Time (us)

Baseline 4682.75
Crandall Single Step 195.29
Crandall Multi Step 194.95
Incomplete Reduction 93.11
Incomplete Reduction over Phi 58.46
libsodium 36.80



Conclusion and Future Directions

Conclusions

Cryptography in BitInt(N) types is feasible

Domain-specific optimizations within 1.6x of hand-tuned

Future Directions

Mid-end: more tricks, support more modulus types

Back-end: Intel ADX, AArch64, Peephole

Real-world concerns: constant-time, verification

Custom compiler: MLIR dialect?


