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1 Description

1.1 Motivation

An intriguing feature of LLVM IR is its arbitrary bit-width integer types. One
might think this is just a curiosity, but in fact Formal-Methods-Based Bugfinding
for LLVM’s AArch64 Backend, they observe:

Does anyone actually care if the LLVM backends can deal with non-
power-of-2 bitwidths? Turns out yes: in an optimized compile of
LLVM itself, using LLVM, every integer width from 1 through 64
can be found. The largest integer that occurs when compiling LLVM
using LLVM is 320 bits wide.

This invites the question of how we might leverage non-standard bitwidth
types for specialist applications? Does LLVM do a good job on these use cases,
and what optimization opportunities are there?

Our main target application will be high-performance cryptography, where
elliptic curve implementations rely on efficient multi-precision arithmetic mod-
ulo fixed prime numbers. For example, one widely deployed elliptic curve is
Curve25519, which reduces to operations on 255-bit values modulo the large
prime number 2255−19. Implementations of such curves are famously complex,
but they could be quite easily expressed in LLVM IR using arithmetic opera-
tions on the i255 type. How efficient would the generated code be? Can we
implement techniques used in hand-tuned implementations and bring them to
the LLVM framework? How close could we get it to the best known performance
for these elliptic curves?

1.2 Proposal

The goal of the project is to implement LLVM optimizations targeted at non-
standard bitwidth types. Cryptographic finite-field implementations will be the
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primary focus, as we have reason to believe these might be ripe for applying
domain-specific techniques.

1.2.1 Potential Optimizations

Finite field implementations perform operations on large integers modulo a fixed
prime p. These primes are usually chosen to have specific structure. Crandall
primes have the form 2n − c for a small constant c. Curve25519 mentioned
above has a modulus of this form, as does the NIST P521 elliptic curve with
modulus 2521 − 1. Alternatively Generalized Mersenne primes take the form
f(2n) for some low-weight polynomial f(x) where ideally n is a nice multiple
of a machine word width. The NIST P256 curve for example uses the modulus
2256 − 2224 + 2192 + 296 − 1. These types of structured primes are amenable
to specific optimization techniques, for example Fast Modular Reduction by
Solinas, and Word-by-Word Montgomery Reduction. In this project we would
hope to leverage techniques such as these to optimize a cryptographic finite-field
implementation in LLVM’s IR.

A second approach to consider is whether we can optimize one level up
in the computation. That is, what optimizations could apply over multiple
finite-field operations? This is especially interesting to explore in this context
since we expect to have a concise representation of the computation using large
integer types, prior to lowering and optimization of multi-precision arithmetic
at the machine-word level. A specific optimization we could pursue is so-called
“lazy” or “slothful” reductions [13, 10] where we recognize that we can defer
reduction until the point at which a reduced value is needed, and therefore
perform multiple arithmetic operations in an unreduced form.

Finally, most peak performance finite-field implementations rely on low-level
machine-specific instruction scheduling optimizations. For example, they must
effectively maintain two carry chains using Intel’s ADX Extension. Recent work
[9, 4] has shown massive performance improvements with automated program
search. It seems likely that LLVM may not achieve these peak results out-of-the-
box, and it may be fruitful to explore improvements to instruction scheduling
in these refined use cases.

Implementing modulus specific reduction algorithms, lazy reductions and
instruction scheduling optimizations are good starting points to consider. As
we explore the project, other directions may arise.

1.2.2 Metrics

Early in the project we would establish benchmarks for evaluation. For example,
this might contain an implementation of Curve25519’s finite-field in LLVM IR,
and potentially a suite of similar fields with different parameterizations and
forms. Performance of the compiled code in out-of-the-box LLVM would be our
baseline, and we’d hope to improve it through our domain-specific optimizations.
Performance of best-known implementations in production-grade libraries such
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as OpenSSL would serve as a north star. Performance on multiple architectures
is of interest, but our focus will be x86-64.

1.3 Goals

Our 100% Goal is to implement and evaluate multiple optimizations that apply
to cryptographic finite fields in LLVM IR.

� Implement multiple optimizations.

� One optimization at each level: high-level optimization such as lazy re-
duction, mid-level optimization such as modular reduction for a specific
family of primes, and low-level instruction scheduling.

� Evaluate performance on a suite of cryptographic finite fields relative to
LLVM baseline and external optimized libraries.

Our 75% goal would be to implement and evaluate one optimization method.
There are many possible stretch goals for the project:

Multiple Modular Reduction Strategies Implement optimizations target-
ting multiple families of prime moduli.

Multi-Architecture Explore optimizations on architectures beyond x86-64,
most likely AArch64.

Non-Cryptographic Optimizations Explore how LLVM’s non-standard bitwidth
types are used outside of cryptography.

MLIR Are LLVM’s wide types enough to capture the semantics we need for
this style of optimization? If not, could we use an MLIR dialect to make
compilation easier.

2 Logistics

2.1 Schedule

Tentative schedule:

1. Experiment setup. Implement one or more cryptographic implementations
in LLVM IR that will serve as our optimization targets. Measure baseline
performance in stock LLVM. Gather highly optimized implementations of
the same cryptographic primitives for comparison.

2. Modular reduction optimization. Implement detection of multi-precision
modular reduction in LLVM. Pick one of the modular reduction optimiza-
tion strategies and implement it. Evaluate results relative to baseline.

3



3. Instruction scheduling. Deep dive into the low-level instruction scheduling
for multi-precision arithmetic. Seek optimization opportunities for multi-
precision arithmetic with Intel ADX instructions.

4. High-level optimization. Pursue high-level optimizations prior to lower-
ing into standard bit width types. Likely optimizations here are “lazy”
or “slothful” reduction which attempts to defer and eliminate reductions
when it’s safe to operate with unreduced values temporarily.

5. Stretch goals. Explore stretch goals as time allows. For example, ex-
panding optimization strategies to apply to broader families of crypto-
graphic code, optimizations for non-x86 architectures, or even exploring
non-cryptographic uses of non-standard bit width types.

6. Wrap-up. Final polish. Report writing and presentation preparation.

2.2 Milestone

At the four week mark, we would like to have met the 75% goal outlined in Sec-
tion 1.3. That is, to have implemented and evaluated at least one optimization
applying to cryptographic finite fields in LLVM IR.

2.3 Resources Needed

The intent is to implement these optimizations within the LLVM framework.
We will rely on external libraries such as OpenSSL for evaluation purposes.

Benchmarking will be done on an x86-64 Linux workstation. My personal
workstation provided by CMU SCS should be sufficient.

Depending on the direction the project takes, it may be interesting to make
use of a small cluster of machines for automated program search, or to have
access to an AArch64 server for benchmarking. I expect this will be feasible
with CMU resources.

2.4 Getting Started

I have not done any work on this project specifically, though I have run a brief
experiment using LLVM wide integer types before, and I’ve also written an
experimental elliptic curve cryptography compiler ec3. Therefore I think I am
well-placed to start work immediately.
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