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1 Introduction

An intriguing feature of LLVM IR is its arbitrary bit-width integer types. One
might think this is just a curiosity, but in fact in Formal-Methods-Based Bugfind-
ing for LLVM’s AArch64 Backend, they observe:

Does anyone actually care if the LLVM backends can deal with non-
power-of-2 bitwidths? Turns out yes: in an optimized compile of
LLVM itself, using LLVM, every integer width from 1 through 64
can be found. The largest integer that occurs when compiling LLVM
using LLVM is 320 bits wide.

These types are about to become even more compelling following the inclu-
sion of an N -bit type in the upcoming C23 standard [18]. Until now these types
had been reserved for dedicated users, only recently exposed via the Clang 11
ExtInt extension [13] and prior to that only available when directly producing
LLVM IR. As this niche feature graduates to a BitInt(N) type in standard C,
its use will no doubt proliferate and developers will have raised expectations for
compiler performance.

This invites the question of how we might leverage arbitrary bitwidth types
for specialist applications? Does LLVM perform well on these use cases, and
what optimization opportunities are there? In Adding a Fundamental Type for
N-bit integers several motivating use cases are outlined: “using 256-bit integer
values in various cryptographic symmetric ciphers like AES, when calculating
SHA-256 hashes, representing a 24-bit color space, or when describing the layout
of network or serial protocols.” Low-level hardware applications are also sug-
gested, for example FPGA designs can support extremely wide integers. More
broadly, the appeal of these types is to allow the programmer to more precisely
specify their intent thus improving the clarity and correctness of domain-specific
code, while relying on the compiler for safety and performance guarantees. This
project will probe this claim in the specific case of cryptography, a domain where
both correctness and performance are paramount.

1.1 Opportunity

Our target application will be high-performance cryptography. Given an im-
plementation of a critical cryptographic algorithm written as simply as possible
using arbitrary bitwidth types, how close can the compiler get to hand-tuned
performance?

Arbitrary bitwidth types enable cryptography engineers to write concise im-
plementations of certain cryptographic algorithms, instead of using hand-tuned
implementations in which machine-specific optimizations and hand-written as-
sembly are pervasive and may lead to bugs. Can we provide compiler opti-
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mizations that would get the concise implementation close to the hand-tuned
performance?

Our project scope will focus more narrowly on elliptic curve cryptogra-
phy over finite fields, which rely efficient multi-precision arithmetic modulo
fixed large prime numbers. For example, one widely deployed elliptic curve is
Curve25519 [3], which reduces to operations on 255-bit values modulo the prime
2255−19. Implementations of such curves are famously complex, but they could
be quite easily expressed using arithmetic operations on the BitInt(255) type.
Hand-tuned implementations leverage a variety of tricks for fast reduction mod-
ulo primes with special mathematical structure, as well as micro-optimizations
for multi-precision arithmetic and carry chains. How many of these tricks can we
exploit in LLVM, and therefore produce safer high-performance cryptography?

1.2 Approach

Our goal is to assess the feasiblity of optimized cryptography in LLVM non-
standard bitwidth types by establishing and focussing on a high-value target
benchmark. Our hope is to get as close as possible to state of the art performance
of hand-tuned implementations, and to explore what challenges arise on the way.

Our target benchmark will be the X25519 cryptographic algorithm imple-
mented as simply as possible in C with the BitInt(255) type. This is a critical
widely deployed algorithm, and success optimizing it with LLVM would there-
fore be of potential interest.

The scope of possible optimizations is broad. For project feasiblity we will
focus on LLVM mid-level optimization which can be applied at the IR level. In
addition, we limit attention to a particular class of finite fields that are crypto-
graphically important, namely those with a prime modulus that has the Cran-
dall prime form. Nonetheless, we believe that this restricted scope is still broad
enough to meaningfully assess the feasiblity question for optimized cryptogra-
phy in LLVM. At the end of this report, we’ll cover a pleathora of additional
directions that could be pursued.

1.3 Related Work

Optimization of elliptic curve and finite field operations on CPUs is a thorougly
studied domain. Just a small selection of material on this topic are [6, 11, 8,
10, 17]. This material has mostly focussed on optimizing specific elliptic curves.
The techniques are broadly applicable to classes of curves, but have typically
not been packaged up into compilers.

Code generation for cryptography has also been pursued, for example the
fiat-crypto [9] project outputs verified finite field optimizations, though they
are known to have sub-optimal performance. Building on top of this, the
ecckiila [1] project generates entire elliptic curve implementations. Projects
of this kind are better seen as code generators rather than optimizing compilers.
That said, verification offered by fiat-crypto is a massive source of complexity
not addressed in our project.
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The use of LLVM wide types for cryptography has been pursued before by
the constantine [20] project, where one backend produces LLVM IR directly.
The fact this has been tried before is some vindication for the project direction.
We also note that they typically prefer to use their custom JIT compiler instead,
which suggests that there are performance improvements to be had in LLVM.

Therefore the broad topics have seen related work, but the specific niche of
optimized cryptography in LLVM is still open for improvements. The fact that
it’s now possible with standard C also makes the direction even more compelling.

1.4 Contributions

The contributions of this project are:

� Demonstrate how newly standardized BitInt(N) types can be used to
produce simple high-level implementations of complex cryptography.

� Provide a suite of LLVM analysis and optimization passes that collectively
optimize our target benchmark by 80.1x, and within a factor of 1.6 of
a popular optimized external library. This prototype demonstrates the
feasiblity of optimized cryptography in LLVM.

� Implement Crandall Reduction optimization for fast modular reduction of
cryptographically relevant Crandall primes.

� Design and implement a Reduction Analysis which identifies self-contained
expression graphs of finite field computation.

� Implement an Incomplete Reduction optimization which strips out redun-
dant modular reductions and maintains intermediate values in partially
reduced states.

� Identify future optimization opportunities which we believe would ap-
proach performace parity with hand-tuned code for this class of cryp-
tographic applications.

2 Experimental Setup

Our primary optimization target for experimentation is the X25519 crypto-
graphic function [15] implemented as simply as possible in C with the BitInt(255)

type. The X25519 function is a scalar multiplication on the Curve25519 ellip-
tic curve, which ultimately reduces to arithmetic in the finite field of integers
modulo the prime p = 2255 − 19. X25519 was selected due to its importance as
a real-world cryptographic algorithm, and because the implementation strate-
gies required to optimize its finite field operations could be transferable to other
cryptographic primitives. Finally, our C implementation with 255-bit types is as
simple as reasonably possible to prompt exploration of how much optimization
can be automated by the compiler.
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2.1 X25519

In this section we will see snippets from the implementation to give a sense of
the optimization target. Please refer to the full source code for details.

2.1.1 Finite Field

At its core, X25519 operates on the finite field of integers modulo the prime
2255−19. Elements of the field are represented with the unsigned BitInt(255)

type.

#define FP25519_BITWIDTH (255)

#define FP25519_BYTES ((FP25519_BITWIDTH + 7) / 8)

typedef unsigned _BitInt(FP25519_BITWIDTH) elt_t;

The prime modulus may be defined as a regular C literal:

// `uwb` suffix proposed in N2775 "Literal suffixes for bit-precise integers".

#define FP25519_LITERAL(X) ((elt_t)X##uwb)

#define FP25519_P \

FP25519_LITERAL( \

0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffed)

Finite field operations are then implemented with standard C operators fol-
lowed by modulo operations, ensuring we use a large enough type to contain
the intermeditate result. For example, finite field addition is as follows.

inline __attribute__((always_inline)) elt_t fp25519_add(elt_t x, elt_t y) {

typedef unsigned _BitInt(FP25519_BITWIDTH + 1) add_elt_t;

const add_elt_t s = (add_elt_t)(x) + (add_elt_t)(y);

return (elt_t)(s % FP25519_P);

}

Multiplication is implemented similarly, instead using a double-wide inter-
mediate type. Note we also make use of inlining attributes to ensure that these
computations are inlined into more complex expression graphs used in elliptic
curve operations.

2.1.2 Scalar Multiplication

Having defined finite-field operations, the core of the X25519 function is a scalar
multiplication on the Curve25519 elliptic curve, which is typically performed
with the Montgommery Ladder technique. The mathematical details are not
imporant from our perspective. From a computational point of view, it boils
down to a loop over the bits of a 255-bit scalar, and each iteration does some
conditional swaps and computes a straight-line arithmetic expression using finite
field operations. The most performance critical part of the code is small enough
to present here.
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uint8_t swap = 0;

for (int pos = 254; pos >= 0; --pos) {

const uint8_t b = 1 & (k[pos / 8] >> (pos & 7));

swap ^= b;

fp25519_cswap(&x_2, &x_3, swap);

fp25519_cswap(&z_2, &z_3, swap);

swap = b;

// https://www.hyperelliptic.org/EFD/g1p/auto-montgom-xz.html#ladder-mladd-1987-m

const elt_t A = fp25519_add(x_2, z_2); // A = x_2 + z_2

const elt_t AA = fp25519_sqr(A); // AA = A^2

const elt_t B = fp25519_sub(x_2, z_2); // B = x_2 - z_2

const elt_t BB = fp25519_sqr(B); // BB = B^2

const elt_t E = fp25519_sub(AA, BB); // E = AA - BB

const elt_t C = fp25519_add(x_3, z_3); // C = x_3 + z_3

const elt_t D = fp25519_sub(x_3, z_3); // D = x_3 - z_3

const elt_t DA = fp25519_mul(D, A); // DA = D * A

const elt_t CB = fp25519_mul(C, B); // CB = C * B

// x_3 = (DA + CB)^2

x_3 = fp25519_sqr(fp25519_add(DA, CB));

// z_3 = x_1 * (DA - CB)^2

z_3 = fp25519_mul(x_1, fp25519_sqr(fp25519_sub(DA, CB)));

// x_2 = AA * BB

x_2 = fp25519_mul(AA, BB);

// z_2 = E * (AA + a24 * E)

z_2 = fp25519_mul(

E, fp25519_add(AA, fp25519_mul(FP25519_LITERAL(121665), E)));

}

Note that the formula in the inner loop is derived from the Explicit Formulas
Database [5, 4], a compendium of the best-known formulae to perform various
elliptic curve operations. While this computation is specific to X25519, this
type of construct is representative of an entire class of cryptographic code.

An important caveat to note at this point is that our Montgomery ladder
is not constant-time in one imporant respect, namely the conditional swap uses
a branch rather than the typical XOR trick. This simplification was made
to enable the possibility of optimizations crossing the conditional swap. This
is likely not a blocker for the project’s techniques in the long run, but the
simplification was made subject to the limited time allowed for the project. We
note in future work (Section 6) that handling constant time crytography would
be critical if these techniques were ever to be used in real-world settings.

2.2 Testing

Alongside the target X25519 implementation, we have a test suite and bench-
mark against a popular hand-tuned external implementation.

6



2.2.1 Test Suite

The test suite checks both the low-level finite field operations, and the X25519
function against test vectors [15, Section 5.2]. The test suite is valuable to pro-
vide confidence in our target implementation, to confirm our benchmarks are
representative, and to validate that our custom optimizations preserve correct-
ness.

2.3 Benchmark

The benchmark compares the target implementation against the hand-tuned
version in libsodium [16], a widely deployed and well-optimized cryptographic
provider, which we expect to have good performance, although perhaps not
absolute peak. OpenSSL and EverCrypt [19] were also considered for inclusion,
but libsodium was considered sufficient for this stage of the project. Expanding
the benchmark suite would be valuable in future work (Section 6).

Benchmarks are orchestrated with Google Benchmark compiled with libpfm4
for performance counter support. The target functions are our x25519 scalar mult

described in Section 2.1 and crypto scalarmult curve25519 from libsodium,
both operating on the same synthentic inputs. Benchmarking was performed on
an Intel Core i7-13700K Processor tuned for low-variance by setting performance
scaling governor and disabling Intel Turbo and Hyperthreading. Benchmarks
were executed for 30 seconds with cycle and instruction performance counters
collected alongside timing.

2.4 Baseline

Our benchmark establishes a baseline to work from, and a performance goal to
match. The baseline will be out-of-the-box performance from Clang 17.0.3with
O3. Initial results show that the baseline is a massive 127.3 times slower than
libsodium.

Implementation Time (us) Iterations Cycles

Baseline 4682.75 8962 15771906.96
libsodium 36.80 1141472 124794.13

3 Implementation

Subject to project time constraints, our technical solution focused on a subset
of the problem:

Mid-level optimization. Our optimizations operate at the LLVM IR level.
There are certainly significant gains to be had in the LLVM backend also,
which we would expect to be complementary to this work.
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Crandall primes. Our optimization focussed on finite field operations for Cran-
dall primes, of which the X25519 finite field is a special case. Nonetheless,
we will see that a significant portion of the optimization work is agnostic
to the form of the prime modulus, and we would expect it to be feasible
to extend it to support other specialized cryptographic prime forms.

The optimizations and analyses we have implemented are:

Crandall Reduction. Crandall reduction detects modular reduction urem op-
erations that appear in finite field operations and rewrites them to use
specialized alternatives when the modulus has the Crandall prime form.
This optimization is performed by the CrandallReductionPass.

Reduction Analysis. Reduction Analysis identifies self-contained arithmetic
expression graphs which are guaranteed to be reduced modulo the same
modulus. The purpose of this stage is to detect when intermediate reduc-
tions may not be necessary, and could be safely rewritten to use partially
non-reduced forms. This analysis is provided by the ReductionAnalysis
pass, which provides a ReductionInfo result to consuming passes.

Incomplete Reduction. Incomplete reduction utilizes the prior techniques to
eliminate unnecessary urem instructions. Reduction analysis results allow
us to determine when urem instructions are candidates for elimination, and
instead Crandall reduction techniques can be used to leave it in an incom-
pletely reduced form instead. Incomplete reduction was implemented as
an evolution of the CrandallReductionPass.

3.1 Crandall Reduction

Crandall reduction is a technique for fast modular reduction by constants with
the Crandall form. These reductions appear frequently in cryptographic finite
field implementations. Crandall primes are those of the form p = 2n − c for a
small constant c, but the optimization would actually apply for any modulus
of that form whether prime or not. The optimization leverages the simple fact
that for a modulus p = 2n − c we have 2n ≡ c mod p. Therefore, given a value
x to be reduced, if we represent it as its low n bits l and remaining high bits h,
then:

x = 2nh+ l ≡ ch+ l (mod p),

and ch+ l will in most circumstances be much smaller than x. Therefore, this
does not complete the reduction by p but it cheaply produces a result equivalent
modulo p.

The CrandallReductionPass detects and applies this optimization tech-
nique to LLVM IR. The initial form of the pass was a local optimization:

1. Detection. First we use LLVM pattern matching to locate urem instruc-
tions with a constant integer modulus. Given the constant modulus we
need to determine whether it has the Crandall form 2n − c. We deduce n
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from the number of active bits in the constant, subtract 2n to get a can-
didate for c and then accept it if the candidate is less than a configured
threshold for c.

2. Reduction Generation. Having identified a candidate reduction, gen-
erate LLVM IR instructions to perform a single Crandall reduction step.
That is, to compute ch + l for the high and low bits h and l. This is
done with the IRBuilder: and and lshr instructions are used to separate
the low and high bits, and then add and mul instructions compute the
reduced result. We refer to this as a single Crandall step. In the initial
version of the pass, only a single step was performed and the original urem
instruction is left intact, with its input replaced by the output of the Cran-
dall step. For correctness we need the urem to compute the fully reduced
output.

Despite its simplicity, the results of this pass alone are shockingly good.
Compiling with the CrandallReductionPass that implements single-step Cran-
dall reduction only, we observe a 24.0 speedup over baseline.

Implementation Time (us) Iterations Cycles

Baseline 4682.75 8962 15771906.96
Crandall Single Step 195.29 215216 662345.84

These results are likely so good becuase of how code generation works for
large multi-precision urem instructions in LLVM. Specifically, this is handled by
the ExpandLargeDivRemLegacyPass which generates looping code to perform
large remainder operations, and it’s a correct but inefficent way of doing it for
these special cases. Even though the Crandall step does not actually remove the
urem instruction, the insertion of the step prior to the instruciton allows LLVM
to in some cases replace the reduction with a simpler conditional subtraction.
Or at least when the inefficent construct remains, there is still dynamically less
work to be done. The results are therefore effective, but there’s still a long way
to go to reach hand tuned performance.

Typical optimized implementations of finite-field reductions will apply Cran-
dall reduction steps multiple times, as long as each step is guaranteed to pro-
duce an output with a smaller upper bound. This is a natural extension of
the CrandallReductionPass also, with a goal to eventually replacing at least
some of the urem instructions. The question is what upper bound are we aim-
ing for, and a common trick applied to Crandall moduli is reduction aligned to
the machine word boundary. In practice we know that our 255-bit quantities
will occupy 256-bits in registers, typically either 4x64 or 8x32. Our target for
reduction steps is for the result to once again fit in 256 bits, not necessarily
to get the completely reduced 255-bit value. For an implementation of X25519
this means we will be applying Crandall reduction with the identity 2256 ≡ 38
at the 256-bit boundary, instead of 2255 ≡ 19 at the non-aligned boundary. In
the general case of a Crandall modulus 2n − c we are interested in the next bit
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width m ≥ n that’s a multiple of the machine word size, and the constant c is
adjusted accordingly.

Having established a target upper bound, we need to know the possible range
of values following each Crandall reduction step. At this point we hoped to rely
on LLVM infrastructure, in particular LazyValueInfo which provides deduced
ConstantRange bounds for each value in a function. However, the built-in
analysis is only able to deduce the trivial bound provided by a Crandall step,
not the tighter bound that becomes more relevant as multiple steps are applied.
Therefore it was necessarily to implement a custom getReductionBoundmethod
to compute the possible range of values output from a Crandall reduction step.
With this in place, multi-step Crandall reduction works as follows:

1. Determine Target Reduction. Given a detected Crandall modulus
2n − c we round n up to the next multiple of a machine word m. Now m
and d = 2m−nc take the place of n and c in the original procedure.

2. Determine Input Bound. Use LazyValueInfo to initialize a known
upper bound for the input to the reduction.

3. Iterate Until Reduced. At each iteration, compute how much this step
would reduce the upper bound by. Bail if the step would not decrease the
bound. Otherwise proceeed to generate code for the Crandall reduction,
just as we did for single-step.

Note at this stage the final urem instruction is still preserved, as we do not
know whether it is safe to remove. That will be the priority for upcoming
optimizations. Results for the multi-step reduction are underwhelming at this
stage.

Implementation Time (us) Iterations Cycles

Crandall Single Step 195.29 215216 662345.84
Crandall Multi Step 194.95 215445 661183.93

The change here is marginal at best, though it’s surprising is was so small. In
many cases only one Crandall step is added anyway. But what we’re likely seeing
here is that performance is still dominated by the remaining urem instructions.
Most of the change in the upper bound of the value under reduction comes in
the first Crandall step, and subsequent ones do not significantly reduce the work
required in the urem.

However, the importance of multiple Crandall steps isn’t in an optimization
in itself, rather that they allow us to place a hard bound on the result, which is
critical for correctness. Therefore with this capability in place, we have unlocked
the possibility of removing the reduction entirely.

3.2 Reduction Analysis

Thus far we have seen how Crandall reduction allows for substantial performance
improvements for modular reduction by primes of special forms. In addition,
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when we apply these techniques to a computation of x mod p it is most conve-
nient to arrive at a partially reduced result that’s equivalent to the complete
reduction modulo p but not necessarily equal to it, for example by stopping
reduction steps when we have a result that fits in a convenient multiple of ma-
chine words. We would like to be able to stop at this point and elide the final
urem instruction, but when would it be safe to do so? The purpose of Reduc-
tion Analysis is to answer this question, and tell us when we have self-contained
expression graphs that are all operating on arithmetic modulo the same prime
p, and in that case we can potentially defer complete reduction until later.

Let’s consider a simple example first, drawn right from the inner loop of
X25519. The variable DA is computed as:

D ∗A = (x2 + z2) ∗ (x3 − z3)

However, since these are not plain arithmetic operations, there are implicit
modular reductions by p generated in the code. The expression graph we are
actually processing is:

(D ∗A) mod p = (((x2 + z2) mod p) ∗ ((x3 − z3) mod p)) mod p

Mathematically, the interior modular operations are not necessary. The com-
putation is correct if we replace (x2 + z2) mod p with any value equivalent to
x2 + z2 modulo p. The key observation is that the full reduction is not neces-
sary because we know that there is a complete reduction modulo p later in the
expression graph.

The Reduction Analysis pass computes this property. A value is reduced
modulo p if all uses of the value are also reduced modulo p, and only involve op-
erations that preserve modular arithmetic. Critical examples of modular arith-
metic preserving operations handled by the first iteration of the reduction anal-
ysis pass are:

Non-wrapping Arithmetic. Plain arithmetic instructions such as addition,
subtraction and multiplication propogate the reduction property as long as
we know they will not wrap. Wrapping at machine word boundaries means
the operation is no longer a mathematically pure arithmetic operation.

Casts. Cast operations such as zero extension or truncation can also propa-
gate the reduction property, as long as we can prove they are pure type
transformations and an effective no-op on the value.

A notable additional class of instructions that can propagate reduction prop-
erty is is ϕ nodes, which will be important later.

The ReductionAnalysis pass is an LLVM function analysis pass providing
the ReductionInfo result to consumers. Internally, it uses a worklist-based
algorithm which iteratively updates the state of each value. The possible states
of each value are reminiscent of lattice states for classic constant propagation.
Possible states are:
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UNDEF Undefined state, meaning we have no information about this value.

REDUCED(M) Reduced state. All observed uses of the variable are also reduced
modulo the same modulus M , and only involve preserving instructions.

NOTREDUCED Not reduced. This can mean the value is used in non-preserving
instructions, or is used by instructions that are reduced modulo different
moduli.

Lattice states can be merged with other lattice states with the expected
behavior: imporantly the reduction state is only preserved if the two moduli
are the same, and meeting with NOTREDUCED always produces NOTREDUCED. The
worklist algorithm works as follows:

1. Initialization. All instructions are enqueued to be visited.

2. Modular Reductions. urem instructions by constant moduli generate
the reduction property for their operand. In this case, the operand is
marked reduced in the lattice and enqueued to be visited if its state has
changed.

3. Propagating Instructions. Propagating instructions merge their cur-
rent state with their operands. If this leads to any state changes for
operands, they are added to the worklist.

4. Non-Propagating Instructions. Non-propagating instructions are han-
dled the same, but they merge the NOTREDUCED state with their operands
and enque anything changed.

The end result is lattice states for every value in a function which is exposed
with the ReductionInfo type. Clients can use this to determine which values
have the reduced property, and if so with which modulus. As we’ll see, the most
interesting case is urem instructions that have the reduced property, as these
are candidates for removal.

3.3 Incomplete Reduction

The goal of incomplete reduction is to actually remove modular reductions that
can be deferred until later. Given results of reduction analysis, we can determine
which reductions are candidates for removal, and transform the expression graph
to remove it. You might think this would be as simple as pruning some urem

instructions from the function, but complexity arises because an incomplete
reduction causes larger output values. In turn, larger output sizes require wider
types to hold their possible value ranges. For example, in our original X25519
example we would have a complete reduction to 255-bits followed by a truncation
to the i255 type, which in turn feeds into an i510 multiply. Eliding the final
reduction means the output is now 256-bit, the trucation needs to be i256 and
the multiply i512, and so on. In this manner, the choice to use an incomplete
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reduction cascades into type resizing across the expression graph. Therefore
the extension of the CrandallReductionPass to support incomplete reduction
transitioned it from a relatively simple local optimization into a delicate global
optimization.

The implementation graduated through two main versions: firstly operating
in basic blocks, and the second handling ϕ nodes. Substantial changes were
required between them due to the presence of cycles once ϕ are allowed in the
expression graph. We will only describe the design of the second iteration, but
present results from both iterations. The extended CrandallReductionPass

works in three phases:

1. Plan Reductions. Determine how to handle each modular reduction in
the function: what bound to reduce it to, which Crandall parameters to
apply, and whether the reduction should be left incomplete.

2. Plan Ranges. Given a set of reductions which will be left incomplete,
determine the possible range of values that every value in the transformed
expression graph will now have. These ranges are used to determine new
types.

3. Rewriting. Given reductions to be rewritten, and new types for the
expression graph, actually replace the expression graph with a parallel
rewritten version. Delete the old expression graph and fix up ϕ nodes.

3.3.1 Plan Reductions

Reduction planning determines how each urem by a constant will be handled
by the pass. It detects urem instructions by Crandall moduli and for each one
computes:

� Crandall Parameters. Given p = 2n− c it aligns n to the next machine
word boundary m and computes the adjusted constant d we’ll apply in
Crandall steps.

� Incomplete? We determine whether the reduction will be left incom-
plete. This consumes the output of the Reduction Analysis. Specifically,
a urem instruction with a modulus p will be left incomplete if reduction
analysis reports the instruction has state REDUCED(p).

3.3.2 Plan Ranges

The plan ranges phase aims to determine which types we need to use to safely
preserve the value of the computation through the expression graph. Recall
that in Reduction Analysis we insisted that arithmetic was non-wrapping and
casts were value no-ops. This must still be true in the transformed graph even
with larger outputs of incomplete reductions.

The end result of this phase is a set of deduced LLVM ConstantRange ranges
that each value in the current expression will have in the transformed version.
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Constant ranges for values are initialized to their known range according to
LLVM’s LazyValueInfo. We use a worklist again, which is originally populated
with any reduction instructions planned to be incomplete in the prior planning
phase, since these now have different sizes than the original graph. We iteratively
process the worklist and update instruction ranges depending on their operands,
enqueing their users to the worklist if there has been any change. Instructions
are handled as follows:

� Reductions. If the reduction is incomplete, its output range is set to
the full range [0, 2m) where m is the bitwidth we’ve planned to use for
Crandall reduction.

� Addition. Given input ranges for the two operands, we compute the
complete possible range of values of the unsigned addition. Note care
has to be taken here since default mathematical operations on LLVM
ConstantRange will wrap at the bit size of the inputs. Therefore, we
compute the maximum bitwidth of the output given the inputs, which
is the max of the two inputs plus an extra bit for a carry. Then we
resize inputs to the maximum possible bit width, compute the sum on
the resized ranges. Finally, we truncate the result output range to the
minimal number of bits required to represent it.

� Multiplication. Multiplication is handled in the same way as addi-
tion. The only difference is the maximum bitwidth is now the sum of
the bitwidths of the inputs.

� Subtraction. Subtraction is more delicate. Since this subtraction is
being rewritten, we know from reduction analysis that the original sub-
traction would not wrap. The new version of the instruction must not
either, however the value being subtracted could now be larger due to in-
complete reduction. That is, given an instruction x− y, the input y could
now be larger. We address this by offsetting the x operand by adding
multiples of the modulus. That is, our subtraction will be transformed to:

(ip+ x)− y (1)

for a suitable number of offsets i such that we know the result will not
wrap. Note that adding offsets here can also change the number of bits re-
quired to represent ip+x, and therefore of the entire computation. There-
fore, range planning for a subtraction adjusts the offsets and bitwidths
until it can prove the result would not overflow. The number of offsets
must also be preserved for the code rewriting phase that follows.

� Casts. Casts are treated as passthroughs for the purposes of range plan-
ning. Recall again that reduction analysis confirmed that cast operations
are value no-ops. Therefore at this stage we just see through cast op-
erations and assume the value has the same range as its input. Cast
operations will be inserted as necessary in rewriting.
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� ϕ Node. The range of a ϕ node is the union of the ranges of all incoming
values.

3.3.3 Rewriting

Given the results of range planning, we now have to rewrite the expression graph
to implement incomplete reduction and resize any intermediate values. Rewrit-
ing is performed recursively, with operands rewritten prior to the instruction
itself. Some points on the handling of specific instruction types:

� Reductions. Reductions are rewritten as described in Section 3.1 on
Crandall reduction. Multiple crandall steps are generated until the value
has been reduced to its planned width. If the reduction is planned incom-
plete, no final urem is produced. Care is required when when the reduction
is complete, since we can think of it as an exit point from the rewritten
expression graph. A complete reduction requires the final urem as well as
potentially an integer cast to ensure the output has the same type as it
did before.

� Binary Operators. The result of range planning is used to determine
the integer type required for the operation such that it will not wrap, and
integer casts are applied to the inputs to ensure they’re all of the same
type. In the special case of subtraction, we also need to apply modulus
offsets to the left-hand-side.

� Casts. Casts are not explicitly rewritten, and we passthrough to rewriting
the operand. Casts do end up implicitly regenerated when values are used
as operands to other resized insructions.

� ϕ Node. Handling of ϕ nodes must be done with care to avoid a recursive
cycle. In the first rewriting phase, ϕ nodes are replaced with a new place-
holder ϕ, which will be populated at the final stage of rewriting. Unlike all
other instruction types, we do not recurse into operands when processing
a phi node, as this could induce a cycle.

Once the transformed expression graph has been written we fixup the func-
tion:

1. Populate placeholder ϕ nodes by inserting the rewritten incoming values.
Integer casts may be required here too, and these have to be written into
the source basic blocks.

2. Finally, delete the old expression graph. Replace any uses of rewritten
values that need to be consumed by the preserved portion of the function.
Specifically, this means any complete reductions remaining.
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3.3.4 Results

Results for incomplete reduction are very encouraging. In comparison to local
optimizations that leave complete reductions intact, we see a 2.1 speedup in the
initial version of incomplete reduction that did not handle ϕ nodes.

Implementation Time (us) Iterations Cycles

Crandall Multi Step 194.95 215445 661183.93
Incomplete Reduction 93.11 451088 315782.34

However, it was clear from inspecting generated code that remaining com-
plete reductions in the inner loop were a substantial drain on performance.
This motivated a push to adapt the incomplete reduction algorithm to support
ϕ nodes, and therefore allowing the entire loop to operate over non-reduced val-
ues. This change actually required substantial surgery on the implementation:
initially everything was handled in the recursive rewrite function, but ϕ node
handling prompted the split into distinct range planning and rewrite phases.
The effort paid off in performance improvements, where we see another 1.6
speedup that takes us to a factor of 1.6 away from hand-optimized libsodium.

Implementation Time (us) Iterations Cycles

Incomplete Reduction 93.11 451088 315782.34
Incomplete Reduction over ϕ 58.46 718515 198282.05
libsodium 36.80 1141472 124794.13

3.4 Orchestration

Finally, we note that orchestration of custom passes was delicate due to how
they interact with existing optimizations. The LLVM passes are most easily
able to deduce the semantics of the computation after some light optimization
passes have run, but before the entire suite of O3 passes. The optimization
pipeline actually applied is the following comma-separated sequence of pass
specifications to the LLVM opt tool:

1. module(sroa),module(sccp),module(early-cse): These stock LLVM
optimizations effectively cleanup the input IR in the X25519 inner loop to
be a sequence of arithmetic operations and type casts on plain IR values.

2. module(function(loop(loop-unroll-full))): Loop unrolling is applied
most notably for the finite field inversion code which involves a number of
small constant trip count loops annotated with #pragma unroll.

3. function(crandall-reduction): At this point we invoke our pass. De-
pendence on the ReductionAnalysis is specified in code and handled by
the pass manager.
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4. module(verify): Verify post pass output, just to be sure we produced
valid IR.

5. default<O3>: Lastly, invoke the barrage of standard LLVM optimization.

4 Experimental Evaluation

In Section 3 we presented our incremental results in developing targetted opti-
mizations for finite field cryptography in arbitrary bitwidth types. Please refer
back for detailed discussion of the individual steps. The table below summarizes
the performace progression as our optimizations matured.

Implementation Time (us) Iterations Cycles

Baseline 4682.75 8962 15771906.96
Crandall Single Step 195.29 215216 662345.84
Crandall Multi Step 194.95 215445 661183.93
Incomplete Reduction 93.11 451088 315782.34
Incomplete Reduction over ϕ 58.46 718515 198282.05
libsodium 36.80 1141472 124794.13

Starting from a simple implementation of X25519 in Section 2.1, we have
achieved a masive 80.1x speedup therefore reaching performance within 1.6 of
a real-world optimized library. That’s an exciting result!

Nonetheless, from inspecting the generated code there are still clear deficien-
cies that could be addressed to close the 1.6x gap.

Back-end Improvements. Mid-end optimization can only get so far. In fact,
our optimizations have done remarkably well. However, the generated
code for multi-precision arithmetic in LLVM’s x86 backend is clearly not
as good as it could be. Notably it falls back to lowest common denomina-
tor instructions. For example LLVM uses the MUL instruction rather than
MULX from the BMI2 extension, which takes arbitrary inputs and does
not affect flags. LLVM also does not leverage ADX extensions which per-
mit maintence of two distinct addition carry chains, and were specifically
crafted for this kind of cryptographic multi-precision code.

Register Allocation. It appears by inspection that LLVM is spilling registers
more than may be required. A plausible hypothesis is that this is a down-
stream consequence of poor instruction selection and scheduling for the
multi-precision arithmetic, therefore spilling may be reduced if we could
address the code generation issues.

Implementation Tricks. There are a pleathora of implementation tricks used
in hand-tuned optimizations and it appears by inspection that LLVM may
not be taking full advantage of them. For example, hand-tuned implemen-
tations carefully implement 257-bit additions by “folding the carry” bit
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into the next Crandall reduction step using CMOVC. Squares are also code
generated differently from multiplies. While LLVM is able to observe
these tricks to some degree, the results are not as tight as hand-tuned
optimizations, leaving a gap that could potentially be closed.

5 Surprises and Lessons Learned

The first surprise of the project came quickly, namely the poor Clang/LLVM
baseline performance. I expected better performance from Clang/LLVM out-of
the box. In retrospect, this is arguably a consequence of a deliberatly simplified
implementation of the finite field underlying X25519. This was intentional to
produce a cryptographic implementation that was as close to “obviously cor-
rect” as you can get with C. However it produces unusual code patterns that
trigger fallback code generation in LLVM that is correct but has pathological
performance. In this case the ExpandLargeDivRemLegacyPass was producing
extremely poor looping reduction algorithms. Ultimately the poor baseline per-
formance was not a problem per se, and in fact suggested there would be multi-
ple avenues for performance gains. At the same time it quickly suggested there
would be a lot of work to match hand-tuned implementations, and dashed my
hopes of beating hand-optimized libraries in the timescale of the project.

My biggest surprise of the project was the effectiveness of mid-end optimiza-
tion passes alone at allowing us to substantially close the gap to hand-optimized
code. As noted in Section 4 there are likely substantial remaining gains to be
had in the LLVM backend, but my incoming intuition told me much more of
the gains would be found there. That said, another motivation for this project
was to explore the possibility that LLVM may uncover optimizations missed by
hand-tuning, especially at the level of the modular arithmetic expresion graphs
targetted by our passes. I think this still remains an open question, but the
effectiveness of the mid-end optimizations alone is yet another testament to the
design of LLVM’s IR and maturity of its optimizer.

The implementation phase of the project presented surprises and challenges
that were perhaps a failure to account for Hofstadter’s law. Initial local opti-
mizations were relatively easy to get right, but reduction analysis and incomplete
reduction required far more thought and iteration to refine. Notable complexi-
ties were handling ϕ nodes in Incomplete Reduction (Section 3.3), which neces-
sitated the splitting of the range planning and rewriting phases. Furthermore,
correct handling of subtraction rewrites was a challenge to debug and resolve.
Even the more peripheral aspects of the project took slightly more time to get
right than budgeted for, for example establishing the target benchmark with
tests and benchmark suite, integrating with external cryptographic libraries,
compiling against Google Benchmark with performance counters, establishing
a build system for compiling the same program with multiple different versions
of custom optimization passes, and so on.

On a similar note, LLVM’s complexity is not to be underestimated and I
perhaps approached this with some hubris. I had intended to implement backend
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optimizations as well, and spent quite some time understanding how LLVM’s
selection DAG was lowering multi-precison arithmetic into X86 instructions. In
retrospect this work was interesting but in the project time constraints did not
bear fruit into concrete results.

Continuing in the vein of LLVM complexity, it was frequently a problem
that LLVM itself would apply optimizations that interfere with the ability of our
passes to correctly infer the semantics of the original computation. Therefore,
a carefully crafted optimization pipeline was required to achieve the desired
effect. A substantial part of the project was understanding LLVM internals,
how it was optimizing existing code, and how best to interact within them.
Implementating domain-specific transformations in LLVM may or may not be
a good idea depending on how they interact with the existing pipelines.

Despite surprises and challenges along the way, this project reached a pleas-
ing conclusion. Performance within 1.6 of well-optimized libraries is no mean
feat.

6 Future Work

While the 1.6 gap to hand-tuned code is satisfying, performance parity feels
within grasp here. Moreover, it would be interesting to futher probe the ques-
tion of whether there are compiler techniques that could beat hand-tuned opti-
mizations. Specific areas for further work:

Mid-end Optimization. As noted in Evaluation (Section 4), there are more
implementation tricks remaining that could likely squeeze out more per-
formance from the mid-end optimization. Some concrete ideas that could
be pursued:

� “Folding the carry.” this trick uses conditional move instructions to
conditionally apply a Crandall reduction step when a machine-word-
aligned add overflows.

� Square specialization. Multi-precision should be more efficient than
a regular multiply, since some of the word-by-word multiplies are
common. Is LLVM correcty taking advantage of this fact?

� Machine word alignment. At present, the IR produced by incomplete
reduction still contains multiplies of odd bitwidth types. It may be
worth checking whether LLVM performs better if these odd types are
rounded up to machine word widths.

� Multiplication by constants. X25519 operations end up containing
multiplies by fixed constants, for example 121665, and 38 also arises
from the Crandall steps. Hand-tuned code often specializes assembly
just for these cases. Is there anything that can be transferred to
LLVM’s code generation for fixed constant multiplies?
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� Slothful Reduction. The Incomplete Reduction pass already imple-
ments partial reduction in order to reduce reduction overhead, how-
ever the choice of the limit to reduce to is relatively naive. It would
be interesting to gradute the techniques to incorporate the so-called
“Slothful Reduction” [21], whereby an entire expression is analyzed
to deduce the optimal size.

Expand Benchmark and Testing. The test and benchmark suite should be
expanded. The target set of programs with implementations of more el-
liptic curves, not just the X25519 algorithm. Moreover, a refined set of
synthetic microbenchmarks would help to drive optimization efforts. For
example, the Explicit Formulas Database [5] would provide an excellent
source of the kinds of straight line expression graphs we care about. Track-
ing average performance over all these graphs would be interesting.

On the other side, if we were to approach performance parity, we’d need to
expand the external libraries used for performance comparison. libsodium
is good but we’d expect that OpenSSL, EverCrypt [19] and others may
be incrementally better.

Other Cryptographic Moduli. The work of this project focussed on moduli
of Crandall form, which occur frequently in cryptographic code. However
there are others that are tackled with an alternative form of optimiza-
tion known as Montgomery reduction. It is our hope that many of the
techniques described here would still be agnostic to the modulus form, for
example the Reduction Analysis and the core structure of the Incomplete
Reduction pass. Ideally it would be possible to refactor these techiques to
support a pluggable implementation of the reduction piece, and therefore
support other types of cryptographically relevant moduli. Future work
should address this question.

Back-end Optimization. Following on from comments in the Evaluation sec-
tion (Section 4), it is clear that the generated code from LLVM’s backend is
sub-optimal. Future work should examine how to improve multi-precision
code generation, both by leveraging BMI2 and ADX extensions on X86
platforms that support them, and by improving handing of carry chain
scheduling. Back-end optimizations are additionally interesting because
they are more likely to transfer to other domains using multi-precision
arithmetic than the mid-end optimizations we pursued in this project.
The complexity of LLVM’s backend meant we could not probe this ques-
tion in this project, but it will almost certainly have to be tackled to meet
performance parity.

Multi-architecture Support. With ARM increasingly relavent in consumer
and cloud markets, it would be interesting to pay attention to code gen-
eration not just for X86 but also for ARM and other architectures. In
particular, it would be interesting to get at the question of what the right
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intermediate represetnations are for finite field and multi-precision arith-
metic if you want to be able to match hand-tuned code on multiple backend
architectures.

Peephole Optimization. Most peak performance finite-field implementations
rely on low-level machine-specific instruction scheduling optimizations.
While we can no doubt make improvements to the backend, we may end up
relying on typically approximate machine models for instruction schedul-
ing. Recent work [14, 7] has shown massive performance improvements
with automated program search. It would be interesting to see to what
extent we can apply these ideas in a finite-field domain specific compiler,
ideally attempting to cut down on the search time required to achieve
their optimal results.

Constant-Time Support. A significant caveat of this project, and in fact
a well-known problem of writing cryptography in higher-level languages,
is that we cannot yet guarantee the compiler will produce constant-time
code. Any operation whose timing might depend on secret data is a po-
tential side-channel risk, and the typical way this happens is branching,
though variable time arithmetic instructions exist also. Any real applica-
tion of the techniques in this project would have to grapple with this prob-
lem. Working within LLVM is one option, but existing work attempting
to add annotations or guaranteed constant-time support to LLVM has not
borne fruit given the sheer complexity of the existing project. Constant-
time support may be a reason on its own to pursue a domain-specific
non-LLVM approach, but there are other requirements that might push
us in that direction too.

MLIR Dialect. As covered in the discussion of project surprises (Section 5),
at times it felt like fighting with LLVM to enable it to see the semantics
of the modular arithmetic computation that was being performed. This
is especially true given the restricted set of propagating instructions that
the Reduction Analysis pass supports. One approach might be to harden
the existing approaches to recognize more code patterns in LLVM IR, but
another might be to accept the right approach is custom representations
where the semantics are explicit. An entirely custom compiler is of course
an option that might be necessary, but an MLIR dialect is also an intrigu-
ing possibility. One could imagine dialects at different levels: an elliptic
curve point dialect lowers to finite field dialect modulo primes, which in
turn lowers to a multi-precision arithmetic dialect and finally to LLVM IR.
It would not be the first project of its kind, the HEIR project is already
implementing a Homomorphic Encryption compiler on top of MLIR [12].

Verification. Finally, verification is increasingly viewed as table-stakes for
cryptographic implementations, given the ease of writing bugs and the
outsized consequences. Similar to constant-time support, a real produc-
tion finite field cryptography compiler would likely need to tackle verifica-
tion in order to be a compelling proposition amongst offerings in modern
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cryptography engineering. Valuable future work would be to consider how
to develop a domain-specific compiler of this type with verification sup-
port. It’s likely this would again pull us away from the LLVM and MLIR
approaches, but a verified compiler with close to hand-tuned performance
would be a holy grail goal.

7 Conclusion

This project has assessed the feasibility of optimized cryptography using non-
standard bitwidth types. By tackling a target benchmark of an X25519 imple-
mentation in simple C BitInt(255) types, we have shown how domain-specific
LLVM analyses and passes can give a massive performance boost and take us
to within a reasonable 1.6 gap from well-optimized libraries. The optimizations
presented applied Crandall modular reduction techniques, together with Re-
duction Analysis that allowed us to maintain finite field computations in more
efficient forms. Their effect compounded to give an 80.1 speedup over the initial
baseline.

While this makes a case for feasibility, there is much more that could be
done, and fundamental issues that would need to be addressed if it was to be
considered for real-world use. Ultimately, LLVM may not be the right vehicle for
this kind of domain-specific compilation, but an optimizing compiler for elliptic
curve finite field cryptography remains an exciting prospect.
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