
Hardware Intrinsics in WebAssembly

Michael McLoughlin
mcloughlin@cmu.edu

CMU 17770 Final Project Report

Contents

1 Introduction 1

2 Project Setup 3
2.1 SHA-1 Algorithm . 3
2.2 AArch64 SHA-1 Instructions . 4
2.3 Optimization Target . 5

3 Intrinsics in WebAssembly 5
3.1 Baseline C Intrinsics Layer . 6
3.2 Engine Integration . 7
3.3 Interim Performance Results . 8
3.4 Refined Intrinsics Interface . 9

4 Results 11

5 Discussion 11

6 Work in Progress: Auto-Derived Fallbacks 13

7 Further Work 14

A Artifacts 15

1 Introduction

WebAssembly (Wasm) is designed for hardware-independence and execution
with “near native code performance, taking advantage of capabilities common
to all contemporary hardware” [8]. This goal has been achievable for core Wasm
built upon now decades-old instruction sets. However, in the post Moore’s Law
era we have seen increasing specialization in CPU and instruction set design
to achieve performance gains. Modern instruction sets include advanced vector
extensions and domain-specific instructions, for example for cryptographic and

1

machine-learning applications. As Wasm’s adoption grows there is demand to
expand the “near native” performance goal into domains that require these
dedicated instruction sets. At the same time, we would like to do so without
sacrificing Wasm’s hardware- and platform-independence.

One approach to domain-specific acceleration in Wasm is standards evo-
lution. Wasm is not frozen: the community group is active and the proposals
process [11] allows for principled extensions of the standard. For example, Wasm
2.0 added 128-bit SIMD instructions [9] and later proposals allowed for faster
performance [7]. However, it is often difficult or impossible to design abstraction
layers that allow high-performance on multiple target platforms. Even where
possible, the standardization process is slow and deliberative by design, so Wasm
users would have to wait a long time to benefit from the latest instruction-set
extensions. Finally, instruction set extensions have now driven ISAs to include
literally thousands of instructions, and it is unclear that the Wasm standard
should ever grow to a similar scale. Therefore, while standards evolution is the
right approach for longer-term adoption, it would also be desirable to have a
WebAssembly extension mechanism that can provide direct access to modern
instruction sets on a shorter timescale.

The HW-Specialized WebAssembly proposal [3] suggests an extension mech-
anism for Wasm to support execution of dedicated hardware instructions and
optimized library kernels. Under the proposal, accelerated functionality would
be accessed via functions tagged with a custom @builtin attribute. For exam-
ple:

(func (@builtin "libssl" "vaes_gcm_setiv")

(param $ctx i32) (param $iv i32) (param $ivlen i32)

(result i32)

;; function body

)

The intention is that the attribute signals to supporting engines that the
function should be treated as an intrinsic; that is, compiled down to a spe-
cific machine instruction or library kernel on supporting platforms. Meanwhile,
the function body exists to preserve the hardware-independence of Wasm. The
so-called fallback function can always be executed as a plain Wasm function
on any platform. The proposal also discusses other aspects of the problem:
mappings of machine-specific types to Wasm equivalents, checking for the ac-
celerated builtin availability, versioning, and sharing the mappings of built-ins
to machine instructions in a templates database.

In this project we explore the practicality of this proposal as an approach to
hardware-specialization in Wasm. We do so by showing a proof-of-concept for a
selected representative use case, namely the SHA-1 cryptographic algorithm us-
ing the Cryptographic Extension on AArch64. We successfully demonstrate that
C code written against ARM’s C intrinsics API can be executed both natively
and via Wasm. We achieve Wasm execution by providing a Wasm AArch64
intrinsics C API layer, together with a fork of the Wasmtime Wasm runtime
that supports intrinsic calls for a select group of AArch64 instructions. The end

2

result is SHA-1 execution performance at only 1.3x native, demonstrating the
feasibility of “near native” performance with hardware specialization.

2 Project Setup

The HW-Specialized WebAssembly proposal has many aspects to it. For the
purposes of project scoping, we selected a representative motivating example to
evaluate whether hardware intrinsics in Wasm could work from a user-interface
and engine perspective. Specifically, our target is the SHA-1 cryptographic al-
gorithm implemented with AArch64 Cryptographic Extensions. Cryptographic
acceleration is one of the primary motivating examples for hardware intrinsics,
especially given the importance of fast correct cryptography in foundational
networking applications. The dedicated SHA-1 instruction set in AArch64 also
has a modest number of instructions, making it possible to develop a proof-
of-concept for a realistic example without the need to support thousands of
opcodes.

It would be possible to demonstrate hardware intrinsics at the pure Wasm
level, however this would yield a technically correct but underwhelming result.
Our goal is to show the practicality of a potentially realistic use case. Therefore,
we chose to target an implementation of SHA-1 in C using the Arm C Language
Extensions [1], which provides access to Cryptographic Extension instructions
through the arm neon.h C header. The goal is an implementation of SHA-1
compiled against the ARM native intrinsics that runs natively and could also
work—with acceleration—when compiled and executed under a Wasm toolchain
with intrinsics support.

2.1 SHA-1 Algorithm

The SHA-1 algorithm hashes an arbitrary-length message to a 160-bit hash
value. The core of SHA-1 is a compression function that combines an incoming
160-bit state with a 512-bit message chunk to produce a new 160-bit state. The
performance of SHA-1 boils down to the efficiency of the compression function
implementation. The compression function operates on five 32-bit registers
Ai, Bi, Ci, Di, Ei over 80 rounds, each of which consumes a 32-bit word Wi from
themessage schedule. First, the message schedule is computed by initializing the
first 16 words W0, . . . ,W15 to the 32-bit big-endian words of the input 512-bit
message and then computing:

Wi = (Wi−3 ⊕Wi−8 ⊕Wi−14 ⊕Wi−16) ≪ 1,

3

for i = 16, . . . , 79, where ⊕ is bitwise exclusive or and ≪ is bitwise left-rotate.
The round update function is:

Ai+1 = (Ai ≪ 5) + Fi(Bi, Ci, Di) + Ei +Ki +Wi

Bi+1 = Ai

Ci+1 = Bi ≪ 30

Di+1 = Ci

Ei+1 = Di,

where Fi is a bitwise function that may be choose, parity or majority depending
on the round, andKi are round-dependent constants. The final state is obtained
by adding final register values into the original input state.

At a high-level, SHA-1 is a sequence of pure bitwise and arithmetic opera-
tions. It is simple to implement but inherently serial and difficult to vectorize
a single computation (multiple independent SHA-1 computations are trivially
vectorizable). Therefore, it benefits substantially from custom hardware accel-
eration.

2.2 AArch64 SHA-1 Instructions

AArch64 Cryptographic Extensions offer a family of size instructions for SHA-1
acceleration:

� SHA1C Qd,Sn,Vm.4S: computes four rounds of the SHA-1 compression
function with registers A,B,C,D in a 128-bit vector register Qd, E in the
low 32-bits of a vector register Sn, and inputs words Wi in Vm. The bitwise
function is choose, from the C mnemonic.

� SHA1P Qd,Sn,Vm.4S: as SHA1C with parity bitwise function.

� SHA1M Qd,Sn,Vm.4S: as SHA1C with majority bitwise function.

� SHA1H Sd,Sn: computes the SHA-1 fixed rotate by 30 (applied to B)
on the low 32-bits of a vector register ‘Sn’. Note that AArch64 has a
left-rotate instruction on the general-purpose register file, but the SHA1H

instruction avoids the expensive move between register files.

� SHA1SU0 Vd.4S,Vn.4S,Vm.4S: computes part of the message schedule,
called “SHA1 schedule update 0”. Operates on three segments of mes-
sage words in vector registers.

� SHA1SU1 Vd.4S,Vn.4S: completes the messages schedule, called called
“SHA1 schedule update 1”.

These instructions are available from C with the arm neon.h functions [2]:

uint32x4_t vsha1cq_u32(uint32x4_t hash_abcd, uint32_t hash_e,

uint32x4_t wk);↪→

uint32x4_t vsha1pq_u32(uint32x4_t hash_abcd, uint32_t hash_e,

uint32x4_t wk);↪→

4

uint32x4_t vsha1mq_u32(uint32x4_t hash_abcd, uint32_t hash_e,

uint32x4_t wk);↪→

uint32_t vsha1h_u32(uint32_t hash_e);

uint32x4_t vsha1su0q_u32(uint32x4_t w0_3, uint32x4_t w4_7,

uint32x4_t w8_11);↪→

uint32x4_t vsha1su1q_u32(uint32x4_t tw0_3, uint32x4_t w12_15);

These instructions are guaranteed by compiler toolchains to compile down to
the corresponding assembly instructions. Note that the C interface introduces
subtle changes from the underlying instructions for usability reasons: for exam-
ple, the hash e argument is a regular 32-bit unsigned type in C but belongs in
a vector register.

2.3 Optimization Target

Our target for the purposes of the project is an implementation of SHA-1 in C
using the intrinsics interface above. To give a feel for the implementation, four
rounds of the compression function are:

// Rounds 28-31

e0 = vsha1h_u32(vgetq_lane_u32(abcd, 0));

abcd = vsha1pq_u32(abcd, e1, t1);

t1 = vaddq_u32(m1, vdupq_n_u32(K1));

m2 = vsha1su1q_u32(m2, m1);

m3 = vsha1su0q_u32(m3, m0, m1);

Note that since the specialist instructions deal with vector registers, we also
have to use other utility intrinsic functions, namely:

uint32x4_t vld1q_u32(uint32_t const *ptr);

void vst1q_u32(uint32_t *ptr, uint32x4_t val);

uint32x4_t vaddq_u32(uint32x4_t a, uint32x4_t b);

uint32x4_t vdupq_n_u32(uint32_t value);

uint8x16_t vrev32q_u8(uint8x16_t vec);

uint32_t vgetq_lane_u32(uint32x4_t v, const int lane);

uint32x4_t vreinterpretq_u32_u8(uint8x16_t a);

uint8x16_t vreinterpretq_u8_u32(uint32x4_t a);

Alongside the intrinsics-optimized version we also have an implementation
of SHA-1 using plain C for comparison. For evaluation purposes we also have:
a unit test against a SHA-1 test vector to ensure correctness, and a microbench-
mark to evaluate performance.

The implementation was developed and tested first on a AArch64 native
platform (Apple M1 with Clang toolchain). The goal is to provide a corre-
sponding toolchain for Wasm that allows the same C implementation to execute
essentially unchanged.

3 Intrinsics in WebAssembly

Our approach for AArch64 intrinsics in Wasm requires two main components:

5

https://github.com/mmcloughlin/hwwasm/blob/769ce9b891b1da2151af7d320001114798444c9a/example/sha1/sha1_intrinsics.c
https://github.com/mmcloughlin/hwwasm/blob/769ce9b891b1da2151af7d320001114798444c9a/example/sha1/sha1_intrinsics.c
https://github.com/mmcloughlin/hwwasm/blob/769ce9b891b1da2151af7d320001114798444c9a/example/sha1/sha1_generic.c
https://github.com/mmcloughlin/hwwasm/blob/769ce9b891b1da2151af7d320001114798444c9a/example/sha1/sha1_test.c
https://github.com/mmcloughlin/hwwasm/blob/769ce9b891b1da2151af7d320001114798444c9a/example/sha1/sha1_bench.c
https://github.com/mmcloughlin/hwwasm/blob/769ce9b891b1da2151af7d320001114798444c9a/example/sha1/sha1_bench.c

� C Intrinsics Layer. This layer bridges ARM’s C intrinsics API to actual
intrinsics that will be executable in a Wasm engine. In addition, we also
want to provide the capability to execute the same program with pure
Wasm fallbacks. To achieve this we provide a wasm arm neon.h header
and compatibility implementation wasm arm neon.c.

� Engine Integration. Secondly, the target engine must support intrinsics
compilation. That is, it should be able to intercept calls to defined intrinsic
functions and JIT compile them to corresponding instructions.

These layers are tightly coupled, since the C layer and engine have to agree
on the underlying function calls that will be treated specially. Throughout
the project, we learned that design choices at this interface are critical to the
runtime performance of the generated Wasm. We will see this by presenting
the evolution of the implementation, starting with the baseline approach before
discussing the refinements that were necessary to reach near-native performance.

3.1 Baseline C Intrinsics Layer

The first approach to C-to-Wasm mapping was to treat every ARM C function
directly as an intrinsic in the engine as well. The wasm arm neon.h header
contains declarations matching all required C intrinsics (Section 2). Then
wasm arm neon.c contains pure-Wasm fallback implementations, for example
for the vsha1cq u32 call:

uint32x4_t vsha1cq_u32(uint32x4_t hash_abcd, uint32_t hash_e,

uint32x4_t wk) {↪→

uint32_t a = wasm_u32x4_extract_lane(hash_abcd, 0);

uint32_t b = wasm_u32x4_extract_lane(hash_abcd, 1);

uint32_t c = wasm_u32x4_extract_lane(hash_abcd, 2);

uint32_t d = wasm_u32x4_extract_lane(hash_abcd, 3);

uint32_t e = hash_e;

SHA1_ROUND(SHA1_CHOOSE, 0);

SHA1_ROUND(SHA1_CHOOSE, 1);

SHA1_ROUND(SHA1_CHOOSE, 2);

SHA1_ROUND(SHA1_CHOOSE, 3);

return wasm_u32x4_make(a, b, c, d);

}

Given this layer, we are able to compile both the SHA-1 intrinsics-backed
implementation and the wasm arm neon library to .wasm. The Wasm binaries
link and execute correctly, and pass the SHA-1 correctness test. This provides
intrinsics fallback implementations by compilation from C.

This fallback provides the benefit of platform compatibility, but the perfor-
mance is poor at 9.1x times slower than the native executable. In fact, it is
even 2.2x slower than the plain C version compiled to Wasm, likely because of

6

function calls and conversions between scalar and packed-vector representations
of the SHA-1 register words.

3.2 Engine Integration

The real benefits of hardware intrinsics come from JIT support in the Wasm
engine. For this project we chose to work with Wasmtime [10], a production-
grade Wasm runtime backed by the Cranelift optimizing JIT compiler. This
was selected on the basis of its existing high-quality code generation for the
AArch64 backend, and to demonstrate feasibility in a realistic production-grade
compiler.

Wasmtime engine integration for each intrinsic requires:

1. Assembler Support. Cranelift has an integrated custom assembler, which
has grown to support instructions as needed. Therefore it does not support
the SHA-1 intrinsics out of the box.

2. Register Allocation Metadata. The Cranelift register allocator requires
use/def metadata about instruction operands to compute liveness infor-
mation.

3. New IR Instructions. Cranelift is an optimizing compiler with its own
IR, known as “CLIF”. Threading through intrinsic calls from Wasmtime
requires routing through the IR, therefore each new instruction needs its
a corresponding CLIF instruction. Since CLIF already had precedent for
adding backend-specific instructions such as x86 pshufb, we added new
instructions with the aarch64 prefix.

4. Instruction Lowering. Cranelift implements IR-to-machine code lowering
in a domain-specific language called ISLE [4]. ISLE defines pattern match-
ing rules on IR instruction sequences and determines the corresponding
machine code that will be emitted. Each new instruction required a new
lowering rule. In the case of intrinsics these rules are deliberately sim-
ple, typically just passing through the dedicated IR instruction to the
assembler format. However, one complexity here is type transformations
required from CLIF types to the target machine instruction.

5. Call Interception. Finally, the remaining piece is interception of intrinsic
function calls to emit the corresponding CLIF IR instruction. This part
of the integration is arguably the most fragile. Functions are intercepted
based on their names. Names need not always be present, but if they are
will be present in the Name Custom Section (defined in the WebAssembly
Specification Appendix). The interception itself is simply a pattern match
on the name in Wasmtime’s Wasm-to-CLIF translation logic, emitting
CLIF IR for each.

Note that intrinsic C function handling fits in two categories:

7

� “True” Intrinsics. The SHA-1 C intrinsics themselves, such as vsha1cq u32,
are implemented mostly as a passthrough from the intrinsic function call
to machine instruction, via CLIF IR.

� Emulated. Many of the general vector intrinsics already have exact equiv-
alents in CLIF, and in fact Wasm too. For example vaddq u32 is a CLIF
iadd on the vector I32x4 type. Likewise, vgetq lane u32 is a CLIF
extractlane instruction.

We added support for 12 intrinsics to Wasmtime: the SHA-1 instructions as
“true” intrinsics, and 6 general helpers lowered to existing CLIF instructions.

One problem presented by the SHA-1 instructions in particular was a mis-
match between their C API and the target machine instructions. The C in-
trinsics API takes 32-bit arguments for the SHA-1 E register, but the target
instructions expect them to be in the low 32-bits of a vector register. Wasm
and CLIF do not have a way to express this: 32-bit integers are expected to live
in general purpose registers, not vector registers. As such, the ISLE lowering
rules must emit moves between the general purpose and vector register files to
account for the mismatch.

3.3 Interim Performance Results

Performance of the SHA-1 benchmark compared to native improved rapidly as
each intrinsic was implemented in the runtime, as the following table shows.

vs. Native Change (including prior)

7.6x Intrinsic: vsha1cq u32

5.1x Intrinsics: vsha1{p,m}q u32

5.0x Intrinsic: vsha1h u32

5.1x Intrinsic: vsha1su0q u32

3.6x Intrinsic: vsha1su1q u32

3.8x Intrinsic: vaddq u32

2.7x Intrinsic: vdupq n u32

3.1x Intrinsic: vgetq lane u32

2.9x Intrinsics: vreinterpretq {u32 u8,u8 u32}
3.2x Intrinsic: vrev32q u8

However, despite implementing almost all intrinsics (excluding load/store
operations), the end result still isn’t close to our “near native” goal. Inspect-
ing generated code suggested a few reasons why this might be, and ultimately
motivated a refinement of the intrinsics interface with substantially better per-
formance.

Inspection suggested the following possible issues with the generated code:

� Redundant Moves Between Register Classes. Moves between the general-
purpose and vector register files that were required in the lowering phase
are persisted to the generated code. Unlike full optimizing compilers such

8

as GCC and Clang, optimizing JIT compilers like Cranelift prioritize com-
pile speed and accordingly do not have backend-optimization passes that
would be required to elide these moves. Moves between register classes
are known to cause significant slowdowns in CPU pipelines.

� Memory Operations. We did not implement Wasmtime support for the
memory intrinsics vld1q u32 and vst1q u32 for vector load-store. When
Clang compiles these intrinsics it uses a memory base offset read from
a special global variable. It was not immediately clear how to correctly
lower the intrinsics without making assumptions about the Clang memory
behavior. This is likely resolvable, but it was more delicate than other
intrinsics that perform pure computation. As a result, the generated code
still contains function calls for load/store operations, which will no doubt
slow down reading the SHA-1 message to be hashed. However, adhoc
experiments on this aspect suggested the performance degradation is real
but not the predominant effect.

� Instruction Scheduling. Again, due to compile speed design considera-
tions in optimizing JIT compilers, Cranelift does not have an instruction
scheduling pass. Cryptographic kernel code such as SHA-1 can have per-
formance highly dependent on instruction ordering, therefore the lack of
an instruction scheduling pass likely explains some of the difference from
native.

The general theme behind these problems is that an optimizing JIT compiler
has, by design, a more limited set of optimization passes. Therefore, it is unable
to fix up sub-optimal code resulting from semantics mismatches between the C
intrinsics API and the underlying target instructions. This motivates changes
to the C layer, in order to provide a cleaner interface with the Wasm engine.

3.4 Refined Intrinsics Interface

So far, we had treated the C API as identical to the intrinsics API the engine
would intercept. However, this need not be the case. We achieved significant
performance gains by doing more at the wasm arm neon layer. Firstly, by bridg-
ing the the C intrinsic API to a different engine intrinsic API, and secondly
inlining intrinsic functions that have direct Wasm equivalents.

Bridging to Engine Intrinsics API The redundant moves problem stems
from a semantics mismatch between the C API and the corresponding instruc-
tion. For example, vsha1h u32 takes a uint32 t hash e argument but should
compile to SHA1H Sd,Sn, where Sn is the low bits of a vector register. If the
intrinsics call that reaches the Wasm engine persists this mismatch, then we
have seen that an optimizing JIT is unlikely to have sufficient passes to fix it.
But, what if we arranged for the intrinsic call that reaches the engine to already
have a 128-bit parameter type for hash e?

9

We achieve this by implementing an additional layer, so the intrinsic un-
derstood by the engine can be different. Specifically, in the case of the SHA1H

instruction:

uint32x4_t __intrinsic_vsha1h_u32(uint32x4_t hash_e);

static inline uint32_t vsha1h_u32(uint32_t hash_e) {

return wasm_u32x4_extract_lane(__intrinsic_vsha1h_u32(⌋
wasm_u32x4_splat(hash_e)),

0);

↪→

↪→

}

Here, the intrinsic vsha1h u32 function is now the one that will be
intercepted by the engine, and its API is the same as the assembly instruction.

Notably, the redundant 32-to-128-bit moves still exist, but they now exist as
inlinedWasm operators in the C source code (i32x4.splat and i32x4.extract lane).
Clang is more likely to be able to optimize away these moves as an AOT compiler
than a JIT compiler would be.

Inlining Pure Wasm Intrinsics We noted in Section 3.2 that some instruc-
tions are implemented as passthrough to machine instructions, but others can
be translated to CLIF instructions instead. For example, vaddq u32 can be
translated to a CLIF iadd on the I32x4 vector type. We could even translate
it at a layer before by implementing it with Wasm i32x4.add. If a C intrinsic
can be implemented efficiently with pure Wasm operators, we could handle it
entirely in the C layer, obviating any need to process the intrinsic in the engine.

Therefore, the next change was to implement selected intrinsics as inline
calls in the header where possible:

static inline uint32x4_t vaddq_u32(uint32x4_t a, uint32x4_t b) {

return wasm_i32x4_add(a, b);

}

Again, this has the benefit of improving the results from the AOT compila-
tion since it sees more pure Wasm operators rather than opaque intrinsic calls.
Intrinsic calls are now limited to the cases that need them.

Performance Gains from Refined Interface The combination of these
changes brought massive improvements, bringing us to 1.3x of native perfor-
mance.

vs. Native Change (including prior)

2.5x Bridging to Engine Intrinsics API
1.3x Inlining Pure Wasm Intrinsics

We believe the reasons for these improvements are:

10

� Improved AOT Compilation. Inlined pure Wasm implementations offer
more optimization opportunities at the C compiler level. In addition, the
shims between general purpose and vector types are more likely to be
elided by an AOT compiler with a full suite of optimization passes.

� Fidelity of Engine Intrinsics APIs. With an extra translation layer, the
intrinsics handled by the engine have a closer semantic match to the target
hardware instruction.

4 Results

The previous section on implementation (Section 3) presented the results of dif-
ferent techniques. The table below shows the end result compared to alternative
SHA-1 implementations and execution strategies.

Implementation Execution vs. Native Intrinsics

Intrinsics Native 1.0x
Intrinsics Wasmtime with Intrinsics 1.3x
Plain C Native 2.3x
Plain C Wasmtime Baseline 4.3x
Intrinsics (Fallbacks) Wasmtime Baseline 9.4x

Overall, these results demonstrate feasibility of the approach. Achieving
1.3x native execution qualifies for our “near native” performance goal.

However, intrinsics fallback performance is disappointing, since it underper-
forms a simple generic SHA-1 compiled to Wasm by a large margin. The reason
for this slowdown is likely the repeated Wasm function calls in place of plain
arithmetic/bitwise operations of the Plain C version. If fallbacks performance
was important, inlining would be a good approach to try. In addition, the avail-
ability check functions proposed by HW-Specialized WebAssembly would allow
redirection to a separate non-intrinsics version if necessary. Despite disappoint-
ing performance, fallbacks still successfully serve the goal of preserving Wasm
hardware-independence.

5 Discussion

In this section we discuss some lessons from this proof-of-concept.

Challenge of Semantics Mismatches Compilation via intrinsics passes
through many layers: C intrinsics API, engine intrinsics API, Wasm opera-
tors, CLIF IR and machine code representation. Each of these has their own
semantics and value representations. The example of 32-bit integer types in
Wasm/CLIF causing redundant register moves showed that minor mismatches
can have significant performance impacts. These details are important when

11

the entire goal of hardware intrinsics in Wasm is reaching near-native perfor-
mance. This project demonstrates just one use case, and we might hope that
the idiosyncracies of the SHA-1 instruction set are not widespread. However, it
seems likely that this broader problem of semantics mismatches could rear its
head in other cases, for example when attempting to use wide vector types (e.g.
Intel AVX-512) that do not have Wasm equivalents.

Significance of the Intrinsics API The switch to a refined intrinsics in-
terface at the C layer (Section 3.4) produced massive performance gains. This
suggests that near-native intrinsics performance requires:

1. Implementing C instrincs as inlined Wasm operators wherever possible.
This allows for improved code quality from the AOT compiler, and reduces
the work required by the engine.

2. Engine intrinsics API is as close as possible to machine instructions. This
makes the engine work essentially a passthrough, and limits the optimiza-
tions required from its JIT.

Making this distinction for a small group of 12 instructions needed for the
proof of concept was easy enough. It is interesting to think about how you might
achieve this if the goal was to support hundreds or thousands of opcodes. For
example, is there automation that could detect the cases that can be efficiency
mapped to existing Wasm operators?

Importance of Accompanying Optimizations The underwhelming initial
results (Section 3.3) show that merely mapping to the right machine instructions
is not enough. Supporting optimization passes are critical. In this case, it was
crucial to eliminate redundant moves between register classes, but it is reason-
able to expect instances of this problem for other classes intrinsics. Optimizing
JITs are designed for compile speed and therefore have a much more limited
set of optimizations than a full AOT compiler. In this case we were able to
work around missing Cranelift JIT optimizations by moving the problem to the
AOT compilation layer, however it is not clear that would always be possible.
Indeed, the remaining approximately 30% overhead over native execution may
be a difficult gap to close, given the lack of optimizations such as instruction
scheduling in JIT compilers. Overall, we might expect that Wasm intrinsics
performance would be limited by JIT compiler optimization capabilities.

Engineering Aspects The fork of Wasmtime for this project was modified
with this proof-of-concept in mind. While the engineering was reasonable, the
approach taken is not one that would scale to adding hundreds or thousands
of intrinsic calls. At the time of writing, the ARM intrinsics database contains
12,855 function calls, with 4,344 in the Neon instruction set extension. A full
production-grade version of the wasm arm neon library and accompanying en-
gine support would be a substantial undertaking. You would almost certainly

12

want automation and code-generation involved (discussed in Future Work, Sec-
tion 7), but also certain parts of the integration method in Section 3.2 would
not scale well. The current hand-written assembler would need to support many
more instructions. You also probably would not want to actually extend the
CLIF IR to support every intrinsic either, but instead perhaps support an ex-
plicit passthrough or intrinsic IR node that would effectively perform a trivial
lowering to a wrapped machine instruction. None of these engineering challenges
are intractable, but they would need careful thought.

6 Work in Progress: Auto-Derived Fallbacks

In this proof-of-concept, fallback functions were produced by compiling hand-
written C functions. However, this would not scale well to thousands of in-
trinsics, which presents the question of where the fallback functions would
come from, and how we could be assured of their correctness. Modern in-
struction sets are expansive, so hand-written fallbacks would be tedious and
error-prone to produce. At the same time, vendors such as ARM now distribute
machine-readable specifications [6] of their instruction set semantics, and recent
research [5] has helped make them slightly more practical to use.

An initial goal of this project was to explore the question of whether we
can automatically derive fallback function definitions from the instruction set
specifications.

We have made partial progress towards this goal, however not sufficient to
get an end-to-end example working. Specifically, we have implemented:

� Parser for the AST output of the ASLp partial evaluator for the machine-
readable specification.

� Initial IR format and translator from AST into IR.

� Forked ASLp to support SHA-1 opcodes. These were not initially sup-
ported due to unimplemented syntactic constructs that appear in their
semantics. In addition, additional optimization rules were required to
make the output consumable.

This work could be continued in future (Section 7). However, early indi-
cations suggested that this approach may be more challenging than a simple
one pass translator from the specification’s semantics language to Wasm. In
addition, the SHA-1 examples performed particularly badly in the ASLp tool’s
symbolic evaluator. Since they perform four rounds of SHA-1 they naturally
produce deep nested expressions. Achieving clean results would likely require
several fixup passes in the translator.

Given these challenges, and initial fruitful progress with engine integra-
tion, the focus of the project shifted in that direction. The work-in-progress
is nonetheless is included in the artifact for this project (Section A)

13

7 Further Work

Avenues for future work:

� First-class @builtin Support. The most fragile part of the engine inte-
gration (Section 3.2) is intrinsic call interception, and its reliance on the
custom name section. This was reasonable from the point of view of a
point-of-concept, but a real implementation would want to add and han-
dle the @builtin attribute specially.

� Fallbacks Performance. Our results show that the performance of Wasm
fallbacks was very poor (Section 4), even compared to a Plain C version.
While fallbacks are still valuable for portability, it would be desirable to
avoid egregious performance penalties. One fruitful avenue here might be
inlining fallbacks where possible.

� Coverage. This project focussed on one example of interest and identified
some challenges (Section 5). However, we cannot know how generalizable
these lessons are without trying other classes of intrinsics. It would be
worth picking other representitive use cases to explore the space: for ex-
ample, wide vector types like AVX-512 and narrow floating point used in
Machine Learning acceleration.

� Other aspects of HW-Specialized WebAssembly Proposal. This proof-of-
concept did not explore custom types or the idea of a shared intrinsics
lowering database, both of which would be interesting to pursue.

� Fallback Auto-generation. In this proof-of-concept, fallback functions were
produced by compiling hand-written C. It would be valuable to continue
the work-in-progress (Section 6) to auto-generate fallback functions from
vendor-provided specifications.

� Automation. The approach taken so far for engine integration was man-
ageable at low scale, but not for the many thousands of intrinsics available
in AArch64. ARM does distribute machine-readable databases of their C
intrinsics API in JSON, together with the full semantics of their ISA.
While these databases are famously cumbersome to work with, it does
raise the prospect of automating large parts of the engine integration. It
would be interesting to see how far we could push the automated approach.

� Engineering. As discussed in Section 5, the engineering aspects of inte-
grating potentially thousands of intrinsics into a JIT engine would need
careful consideration.

� Verification. Can we prove that the fallback definitions are semantically
equivalent to their machine-code counterparts? Authoritative vendor pro-
vided specifications potentially make this a tractable problem.

14

� Portable API Derivation. A more nebulous related research question con-
cerns the challenge of designing standardized portable instruction sets
that enable performant access to multiple target architectures. Wasm has
achieved this for its core instruction set, abstracting over base ISAs of X86,
AArch64, RISC-V, and more. To some extent the fixed SIMD instructions
achieve this goal, though relaxed SIMD proposal shows the gaps. In gen-
eral finding a portable abstraction layer over multiple ISA extensions is a
difficult problem. Could automation or synthesis be applied to this prob-
lem: given specifications for two or more instruction sets, can you discover
a portable ISA over them that minimizes the performance gap?

Acknowledgements

Thank you to Ben Titzer and Arjun Ramesh for instruction and advice in the
CMU 17770 class. Thanks also to Chris Fallin and Andrew Brown for advice
on integrating intrinsics in the Cranelift engine.

A Artifacts

At the time of writing, not all artifact repositories are public. Access has been
provided to class instructors.

Hardware Wasm Hardware intrinsics experimental repository: SHA-1 im-
plementation and evaluation tools (Section 2), results data, work-in-progress
fallbacks generator (Section 6), and this report.

� Repository: github.com/mmcloughlin/hwwasm

� Version: 769ce9b891b1da2151af7d320001114798444c9a

Wasmtime with Intrinsics Wasmtime fork with hardware intrinsics sup-
port.

� Repository: github.com/mmcloughlin/hwwasmtime

� Fork Commits: v27.0.0...hwwasm

ASLp Fork ASLp fork with support for symbolic evaluation of SHA-1 instruc-
tion specifications. This work contributed to the incomplete fallback function
generator (Section 6).

� Repository: github.com/mmcloughlin/aslp/tree/hwwasm

15

https://github.com/mmcloughlin/hwwasm
https://github.com/mmcloughlin/hwwasm/tree/769ce9b891b1da2151af7d320001114798444c9a
https://github.com/mmcloughlin/hwwasmtime
https://github.com/mmcloughlin/hwwasmtime/compare/v27.0.0...hwwasm
https://github.com/mmcloughlin/aslp/tree/hwwasm

References

[1] Arm C Language Extensions. url: https://arm-software.github.io/
acle/.

[2] Arm Neon Intrinsics Reference: SHA1. url: https://arm-software.
github.io/acle/neon_intrinsics/advsimd.html#sha1.

[3] Andrew Brown. HW-Specialized WebAssembly. url: https://github.
com/WebAssembly/design/issues/1528.

[4] ISLE: Instruction Selection Lowering Expressions. url: https://github.
com/bytecodealliance/wasmtime/blob/main/cranelift/isle/docs/

language-reference.md.

[5] Kait Lam and Nicholas Coughlin. “Lift-off: Trustworthy ARMv8 seman-
tics from formal specifications”. In: Formal Methods in Computer-Aided
Design, FMCAD 2023, Ames, IA, USA, October 24-27, 2023. Ed. by
Alexander Nadel and Kristin Yvonne Rozier. IEEE, 2023, pp. 274–283.
doi: 10.34727/2023/ISBN.978- 3- 85448- 060- 0_36. url: https:
//doi.org/10.34727/2023/isbn.978-3-85448-060-0%5C_36.

[6] Alastair Reid. “Trustworthy specifications of ARM® v8-A and v8-M sys-
tem level architecture”. In: 2016 Formal Methods in Computer-Aided De-
sign (FMCAD). 2016, pp. 161–168. doi: 10.1109/FMCAD.2016.7886675.

[7] Relaxed SIMD proposal for WebAssembly. url: https://github.com/
WebAssembly/relaxed-simd.

[8] WebAssembly Core Specification. Version 2.0. https://webassembly.
github.io/spec/core/_download/WebAssembly.pdf. W3C, Apr. 19,
2022. url: https://www.w3.org/TR/wasm-core-2/.

[9] SIMD proposal for WebAssembly. url: https://github.com/WebAssembly/
simd.

[10] Wasmtime: A fast and secure runtime for WebAssembly. url: https:
//wasmtime.dev.

[11] WebAssembly Proposals. url: https : / / github . com / WebAssembly /

proposals.

16

https://arm-software.github.io/acle/
https://arm-software.github.io/acle/
https://arm-software.github.io/acle/neon_intrinsics/advsimd.html#sha1
https://arm-software.github.io/acle/neon_intrinsics/advsimd.html#sha1
https://github.com/WebAssembly/design/issues/1528
https://github.com/WebAssembly/design/issues/1528
https://github.com/bytecodealliance/wasmtime/blob/main/cranelift/isle/docs/language-reference.md
https://github.com/bytecodealliance/wasmtime/blob/main/cranelift/isle/docs/language-reference.md
https://github.com/bytecodealliance/wasmtime/blob/main/cranelift/isle/docs/language-reference.md
https://doi.org/10.34727/2023/ISBN.978-3-85448-060-0_36
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0%5C_36
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0%5C_36
https://doi.org/10.1109/FMCAD.2016.7886675
https://github.com/WebAssembly/relaxed-simd
https://github.com/WebAssembly/relaxed-simd
https://webassembly.github.io/spec/core/_download/WebAssembly.pdf
https://webassembly.github.io/spec/core/_download/WebAssembly.pdf
https://www.w3.org/TR/wasm-core-2/
https://github.com/WebAssembly/simd
https://github.com/WebAssembly/simd
https://wasmtime.dev
https://wasmtime.dev
https://github.com/WebAssembly/proposals
https://github.com/WebAssembly/proposals

	Introduction
	Project Setup
	SHA-1 Algorithm
	AArch64 SHA-1 Instructions
	Optimization Target

	Intrinsics in WebAssembly
	Baseline C Intrinsics Layer
	Engine Integration
	Interim Performance Results
	Refined Intrinsics Interface

	Results
	Discussion
	Work in Progress: Auto-Derived Fallbacks
	Further Work
	Artifacts

